세균 초항원에 의해 활성화된 대식세포에서 Toll-like receptor의 발현양상

연세대확교 원주의과대학 내과학교실 ${ }^{1}$, 미생물학교실 ${ }^{2}$
김효열 ${ }^{1} \cdot$ 조현철 $^{2} \cdot$ 김수기 $^{2} \cdot$ 신계철 1

Expression of Toll-like Receptors on the Macrophages Activated by Bacterial Superantigens

Hyo Youl Kim, M.D. ${ }^{1}$, Hyun Chul Cho, M.S. ${ }^{2}$, Soo Kie Kim, M.D. ${ }^{2}$, and Kye Chul Shin, M.D. ${ }^{1}$

Department of Internal Medicine', Department of Microbiology', Wonju College of Medicine, Yonsei University, Wonju, Korea

Abstract

Background: Staphylococcal enterotoxin B (SEB) as a prototype superantigen is known to play a pivotal role in toxic shock syndrome and severe sepsis. However, the precise mechanism initiating the activation of innate effector cells by SEB is unclear. Recently, Toll-like receptors (TLRs), the sensor of pathogen associated molecular pattern (PAMP), have been reported to be expressed abundantly in monocytic lineage-cells. The purpose of this study is to investigate whether TLRs are involved in the SEB-induced immune cell activation and to prove the differential TLRs expression in response to SEB and/or lipopolysaccharide (LPS).

Materials and Methods: SEB was purified by dye ligand affinity chromatography. The mRNA expression of TLR1-9 in human peripheral blood mononuclear cells (PBMC) and human monocytelike THP-1 cell line stimulated by SEB and/or LPS was detected by RT-PCR.
Results : The treatment of PBMC with SEB elicited significant changes in the expression of several TLRs. Interestingly, the mRNAs of TLR1 and TLR5 were clearly up-regulated in PBMC, whereas mRNA of TLR4 was down-regulated in the very early period of stimulation within 1-2 hours, and subsequently up-regulated 3 hours later after the stimulation. The up-regulation of mRNA of TLR4 was detected in PBMC stimulated by LPS. The up-regulation was more prominent in the cells exposed concomitantly to SEB and LPS. The mRNA expression pattern of TLR4 in THP-1 cell line stimulated by SEB or LPS was comparable to those of PBMC.
Conclusion: This study indicates that SEB triggers inflammatory signals on macrophages and PBMC by engaging TLRs, particularly TLR4. The combination of LPS and SEB synergistically modulates TLR4 signaling.

Key Words: Toll-like receptor, Superantigen, Staphylococcal enterotoxin B

서 론

세균에서 분비되는 외독소 중 초항원(superantigen)은 항원전달세포(antigen presenting cell)의 MHC class II 분자와 T 림프구의 T 세포 수용체(T cell receptor) $\mathrm{V} \beta$

[^0]부위와 비특이적으로 결합하여 강력하게 대식세포와 T 림프구를 활성화하고, 이로 인해 tumor necrosis factor α (TNF- α), interleukin-2 (IL-2), IL-1, interferon- γ 등의 사이토카인이 독성 농도로 과량 분비되어 다양한 질병을 유발하는 것으로 알려져 있다 $(1,2)$. 이로 인해 발 생하는 대표적 질환인 독소충격증후군(toxic shock sym drome)은 사람에서 가장 위험한 증후군의 하나로 사망률 이 높으며, 아직까지 효과적인 치료 방법이 없는 실정이 다. 또한 초항원은 그람음성세균의 내독소인 지질다당질 (lipopolysaccharide, LPS)에 의한 패혈증에서 상승작용으

로 더욱 강력한 염증반응을 유도하는데 관여한다(3). 세 균 초항원의 종류로는 Staphylococcus aureus에서 만들어 지는 포도알균 창자독소 B (staphylococcal enterotoxin B, SEB), 독소충격증후군 유발독소-1 (toxic shock syndrome toxin-1, TSST-1)과 Streptococcus pyogenes에서 만들어지는 연쇄구균 발열외독소 A (streptococcal pyrogenic exotoxin $\mathrm{A}, \mathrm{SPEA}$) 등이 대표적이며, 이외에도 그 람음성세균, 바이러스, 미코플라스마, 기생충 등에서도 만 들어진다(2). 이중 SEB 가 초항원에 의한 면역세포 활성 기전 연구에 많이 사용되어 왔다(4).

그러나 아직 초항원에 의해 면역세포가 활성화되는 기 전은 명확하게 밝혀져 있지 않다. 비록 초항원에 의한 T 세포의 활성이 MHC class II 분자에 의존하는 것으로 알 려져 있지만 어떤 항원전달세포에서는 MHC class II 분 자의 발현이 초항원에 의한 T 세포 반응을 유도할 정도 로 충분하지 않은 경우도 있어 MHC class II 분자 이외 에 다른 보조 수용체(coreceptor)가 있을 것이라는 추측이 있었으며, 실제로 사람 단핵구에서 CD38이 MHC class II 분자와 함께 초항원에 의한 T 세포 활성에 보조 수용 체로 관여한다는 연구보고가 있어(5) 아직 밝혀지지 않은 새로운 신호전달 경로가 존재할 수 있을 것으로 추정된 다.

최근 세포막 수용체인 Toll-like receptor (TLR)가 미 생물 병독인자의 특정 구조인 pathogen associated molecular pattern (PAMP)을 인지하여 사이토카인 생성 신호 체계를 촉발함으로써 선천면역(innate immunity)에 중요 한 역할을 담당하는 것으로 밝혀졌다(6). 원래 Toll은 초 파리 (Drosophila)의 초기 배아발생 과정에서 dorsal-ventral axis를 결정하는 중요한 구성요소로 미생물 감염에 반응하여 초파리의 선천면역에 중요한 항균 펩티드의 생 산을 조절하는 것으로 알려졌다(7). 1997년에 Toll의 사람 동족체로 TLR이 처음 발견된(8) 이후 현재까지 사람에는 10 개의 TLR(TLR1-TLR10)이 밝혀져 있으며, 최근 TLR11이 마우스에서 발견되었으나 사람에서 존재하는지 는 아직 확실하지 않다(9). 현재 TLR10과 TLR11을 제외 한 TLR1-TLR9와 결합하는 여러 배위자(ligand)가 밝혀 져 있으며(10), 이 중 특히 TLR4는 그람음성세균의 당지 질 성분인 LPS에 의해 활성화되고, TLR2는 그람양성세 균의 세포벽 성분에 의해 활성화되는 주요 수용체로 알 려져 있다(11). TLR은 사람 말초혈액 단핵구에서 높게 발현되는데, TLR2와 TLR4의 mRNA 발현은 단핵구에서 높게 발현되고, TLR10의 mRNA 발현은 B 림프구에서 높게 발현된다(12). LPS와 마찬가지로 SEB 도 단핵구 세

포의 활성에 의해 유사한 면역반응을 유발하는 것으로 알려져 있어 SEB 와 TLR 의 연관성에 대한 연구가 필요 하나 최근까지 이에 대한 실험적 증거들은 매우 부족한 실정이다.

이에 본 연구에서는 대표적인 세균 초항원인 SEB 에 의한 사람 말초혈액 단핵구와 대식세포의 활성에 TLR의 관련성을 알아보았다. 또한 기존에 알려진 그람음성세균 내독소인 LPS에 의한 TLR의 발현양상과 어떤 차이점이 있는지 알아보고, SEB와 LPS를 동시에 자극하였을 때 관찰되는 상승적 염증반응이 TLR 발현에 어떤 영향을 주는지도 알아보고자 하였다.

재료 및 방법

1. SEB 의 셍산 및 정제

실험에 사용할 세균 초항원은 창자독소 B 를 생산하는 균주인 Staphylococcus aureus ATCC 14458 균주를 진탕 배양하여 이미 알려져 있는 dye ligand affinity chromatography법 $(13,14)$ 으로 분리 정제하여 사용하였다. 분리 된 SEB 는 sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)를 시행하여 순수 정제됨을 확인하였고, 정제된 SEB 의 초항월 효과를 증명하기 위해 $\mathrm{BALB} / \mathrm{c}$ 마우스의 비장세포를 이용한 ${ }^{3} \mathrm{H}$-thymidine 흡착 시험을 시행하였다. 또한 분리 정제된 SEB 의 내독소 함 량을 Limulus amebocyte lysate assay (Endosafe ${ }^{\text {® }}$, Charles River laboratories, Wilmington, MA, USA)로 측 정하였다.

2. 세포 분리 및 배양

사람 대식세포주인 $\mathrm{THP}-1$ 세포와 건강한 성인에서 채 혈한 혈액으로부터 분리된 말초혈액 단핵구(peripheral blood mononuclear cell; PBMC)를 SEB 와 LPS 자극에 의한 TLR mRNA의 발현양상을 확인하는데 이용하였다.

사람 말초혈액 단핵구는 건강한 성인에서 채혈한 혈액 의 백혈구 연층(buffy coat)으로부터 Ficoll-Hypaque 중 층원심법으로 분리하였다. 말초혈액과 인산완충식염수 (phosphate buffered saline, PBS)를 동량으로 혼합한 뒤 Ficoll hypaque (Pharmacia LKB Biotechnology Inc, Piscataway, NJ, USA)로 $1,500 \mathrm{rmm}, 20$ 분간 원심분리하 여 상층액을 분리한 후 단핵구만을 수확하였으며, 남아있 는 적혈구는 $0.85 \% \mathrm{NH}_{4} \mathrm{Cl}$ 를 이용하여 용해시키고 PBS 로 세척하였다. 세포침전물에 PBS 를 넣어 부유시킨 후 hemocytometer chamber에 $10 \mu \mathrm{l}$ 를 넣고 trypan blue로

염색하여 살아있는 세포수를 측정하였다. 세포를 10% 우 태아 혈청이 함유된 RPMI 1640 배지에 부유하였으며, SEB 와 LPS 로 자극하기 전까지 $5 \% \mathrm{CO}_{2}$ 가 함유된 $37^{\circ} \mathrm{C}$ 배양기에서 배양하였다.

실험에 사용된 사람 대식세포주인 THP-1은 American Type Culture and Collection (ATCC)에서 분양받아 계대 배양하여 사용하였다. 세포 배양은 RPMI 1640 배지에 10% 우태아 혈청과 페니실린 $100 \mathrm{IU} / \mathrm{ml}$, 스트렙토마이신 $100 \mu \mathrm{~g} / \mathrm{ml}$ 을 첨가하여 사용하였다.

3. SEB 와 LPS를 이용한 세포자극

말초혈액 단핵구와 THP-1 세포주는 세균 초항원인 SEB와 내독소인 LPS (Escherichia coli 055:B55, Sigma) 로 자극 후 TLR mRNA 발현을 보는데 사용하였다. SEB 와 LPS 의 자극 농도와 시간은 반복적인 예비실험을 통해 결정하였다. 배양된 말초혈액 단핵구와 THP-1 세 포는 6 well plate에 well 당 5×10^{6} 개의 세포를 넣고 4 시 간이 지난 후 배지를 제거하고 새 배지와 함께 SEB 50 $\mathrm{ng} / \mathrm{ml}$ 이나 LPS $50 \mathrm{ng} / \mathrm{ml}$, 또는 SEB $20 \mathrm{ng} / \mathrm{ml}$ 와 LPS $20 \mathrm{ng} / \mathrm{ml}$ 를 동시에 처치하고 시간 경과에 따른 TLR mRNA 의 발현양상을 확인하는 데 이용하였다.

4. RNA 분리 및 cDNA 합성

Trizol 용액(Life technologies, Grand Island, NY, USA)을 이용하여 RNA를 분리하였다. 그 과정으로는 배 양접시를 PBS로 세척하고 Trizol 용액을 넣어 세포를 깬 후 상온에서 5 분간 두었다가 시료 당 0.1 ml 씩의 chloroform을 첨가한 후 15 초간 진탕하였다. 원심분리 후에 RNA가 포함된 상층액을 tube로 옮겨 담은 후 isopropanol 0.3 ml 첨가하고 tube를 한번 뒤집어 섞은 후 상온 에 10 분간 두었다가 $4^{\circ} \mathrm{C}$ 에서 $12,000 \mathrm{~g}$ 로 10 분간 원심분리 하였다. 원심분리 후 RNA 침전물을 제외한 나머지 용액

을 제거하고 나서 75% 에탄올을 $500 \mu \mathrm{l}$ 첨가하여 흔들어 준 후 $4^{\circ} \mathrm{C}$ 에서 $7,000 \mathrm{~g}$ 로 5 분간 원심분리 하였다. 이후에 상층액은 제거하고 RNA 침전물은 공기 중에서 건조시킨 후 diethylpyrocarbonate로 처리한 증류수 $30 \mu \mathrm{I}$ 를 첨가하 여 RNA 를 녹이고 나서 RNA 정량과 역전사반응에 사용 할 때까지 $-70^{\circ} \mathrm{C}$ 에 보관하였다. RNA 정량은 증류수에 녹아 있는 RNA 용액 $5 \mu 1$ 에 증류수 400μ 를 첨가하여 잘 섞은 다음 분광광도계를 이용하여 260 nm 에서 흡광도 를 측정하여 정량하였다. cDNA 를 합성하기 위해 $1-2 \mu \mathrm{~g}$ 의 RNA와 완충용액, 500 ng 의 oligo-dT primer, 15 U 의 avian myeloblastosis virus 역전사호소, 20 U 의 RNase inhibitor (Rnasin), 1 mM 의 dNTP, 5 mM 의 MgCl_{2} 를 얼 음 위에서 혼합하여 $20 \mu \mathrm{~g}$ 의 반응액을 만들었다(Reverse transcription system A3500: Promega, Madison, WI, USA). 이 반응액을 PCR thermal cycler (Hybaid, Franklin, MA, USA)를 이용하여 $42^{\circ} \mathrm{C}$ 에서 30 분간 반응시킨 후 $9^{\circ} \mathrm{C}$ 에서 5 분간 두어 효소를 불활성화시키고 $5^{\circ} \mathrm{C}$ 에서 10 분간 두었다가 실험에 사용할 때까지 $-70^{\circ} \mathrm{C}$ 에 보관하 였다.

5. 중합효소언쉐반응

역전사 반응의 결과로 만들어진 cDNA 는 각각의 실험 목적에 맞게 TLR1~TLR9, glyceraldehyde-3-phosphate dehydrogenase (GAPDH)에 대한 primer를 사용하여 증 폭하였다. 중합효소연쉐반응을 수행하기 위하여 cDNA 합성액 1-2 $\mu 1$, 완충용액, $0.2 \mathrm{mM} \mathrm{dNTP}, 1.25 \mathrm{U}$ Taq polymerase (Takara, Otsu, Shiga, Japan), primer $1 \mu 1$, 2 mM MgCl 를 넣어서 $50 \mu 1$ 의 반응액을 만든 후 thermal cycler에 넣고 적절한 조건으로 중합효소연쇄반 응을 수행하였다. 중합효소연쇄반응에 사용된 primer 서 열과 증폭조건은 Table 1과 Table 2에 제시하였다.

중합효소연쇄반응의 산물은 ethidium bromide가 함유

Table 1. Primer Sequences for PCR of Toll-like Receptor

	Forward	Reverse	Base Pairs
TLR1	CTATACACCAAGTTGTCAGC	GTCTCCAACTCAGTAAGGTG	219
TLR2	GCCAAAGTCTTGATTGATT	TTGAAGTTCTCCAGCTCCTG	346
TLR3	GATCTGTCTCATAATGGCTTG	GACAGATTCCGAATGCTTGTG	304
TLR4	TGGATACGTTCCTTATAAG	GAAATGGAGGCACCCCTTC	506
TLR5	CTAGCTCCTAATCCTGATG	CCATGTGAAGTCTTGGCTGC	437
TLR6	TAGGTCTCATGACGAAGGAT	GGCCACTGCAAATAAGTCCG	1108
TLR7	AGTGTCTAAAGAACCTGG	CTGGCCTTACAGAAATG	545
TLR8	CAGAATAGCAGGCGTAACACATCA	AATGTCACAGGTGCATTCAAAGGG	637
TLR9	GTGCCCCACTTCTCCATG	GGCACAGTCATGATGTTGTG	260
GAPDH	ACCACAGTCCATGCATCAC	TCCACCACCCTGTTGCTGTA	452

All sequences are presented in the $5^{\prime} \rightarrow 3^{\prime}$ direction. GAPDH, glyceraldehyde-3-phosphate dehydrogenase.

된 2% agarose gel에 전기영동하여 증폭산물을 관찰하였 다. 각각의 시료에서 GAPDH 발현정도를 densitometer로 읽은 후에 이 값을 가지고 TLR의 발현정도를 보정하여 상대적 발현정도를 그래프로 나타내었다.

결 과

1. 정제된 SEB 의 초항원 효과

분리된 SEB 의 정제 정도를 알아보기 위해 시행한 SDS-PAGE에서 단일밴드가 관찰되어 순수 정제되었음 을 확인하였다. 정제된 SEB 에 대한 림프구 증식반응을 조사하기 위해 마우스 비장세포를 정제된 SEB 로 자극 후 ${ }^{3} \mathrm{H}$-thymidine 흡착을 본 졀과 SEB 의 용량이 증가함 에 따라 세포 DNA 에 흡착된 ${ }^{3} \mathrm{H}$-thymidine 농도가 증가

Table 2. PCR Conditions for the Detection of Toll-like Receptors

Primer	cDNA $(\mu 1)$	Annealing temperature	Cycle number
TLR1	2	$52^{\circ} \mathrm{C}$	32
TLR2	2	$54^{\circ} \mathrm{C}$	32
TLR3	2	$52^{\circ} \mathrm{C}$	32
TLR4	2	$54^{\circ} \mathrm{C}$	32
TLR5	2	$52^{\circ} \mathrm{C}$	32
TLR6	2	$55^{\circ} \mathrm{C}$	32
TLR7	2	$55^{\circ} \mathrm{C}$	32
TLR8	2	$55^{\circ} \mathrm{C}$	32
TLR9	2	$55^{\circ} \mathrm{C}$	32
GAPDH	1	$55^{\circ} \mathrm{C}$	25

Figure 1. mRNA expression of human Toll-like receptors in peripheral blood mononuclear cells in response to $50 \mathrm{ng} / \mathrm{ml}$ SEB was detected by RT-PCR.

하여 초항원 효과가 있음을 확인할 수 있었다. 분리 정제 된 SEB 의 내독소 함량을 Limulus amebocyte lysate assay로 측정한 결과 $\mathrm{SEB} 1 \mu \mathrm{~g}$ 당 $0.0000098 \mu \mathrm{~g}$ 의 LPS가 함유된 것을 확인하였다.
2. 사람 말초혈액 단핵구에서 SEB 자극에 의한 TLRs mRNA의 발현양상

Figure 1 은 건강한 성인에서 분리한 말초혈액 단핵구 에 SEB $50 \mathrm{ng} / \mathrm{ml}$ 를 처리하고 시간별로 TLR1~TLR9 mRNA 발현을 관찰한 것이다. 그 결과 TLR1, TLR4, TLR5에서 의미 있는 변화가 관찰되었다. TLR1과 TLR5 는 SEB 를 처리하지 않았을 때는 거의 발현되지 않았으 나 SEB 자극 후 점진적으로 발현이 증가하였다. TLR4는 SEB 를 처리하기 전에도 높게 발현되어 있였으며, SEB 처리 후 1 시간째는 발현이 감소되었다가 이후 증가하여 3 시간째 가장 높은 발현을 보이고 서서히 감소하여 처리 전 상태로 회복되었다. 말초혈액 단핵구에서 TLR2, TLR3, TLR6, TLR7, TLR8, TLR9의 mRNA 발현은 SEB 처리전과 비교해 SEB 처리 후 변화 없이 거의 일 정한 발현 양상을 보였다.
3. 사람 말초혈액 단핵구에서 SEB와 LPS 자극에 의한 TLR4 mRNA의 발헌의 비교

Figure 2는 사람 말초혈액 단핵구에 SEB $50 \mathrm{ng} / \mathrm{ml}$ 이 나 LPS $50 \mathrm{ng} / \mathrm{ml}$, 또는 SEB $20 \mathrm{ng} / \mathrm{ml}$ 와 LPS $20 \mathrm{ng} / \mathrm{ml}$

Figure 2. mRNA expression of human TLR4 in peripheral blood mononuclear cells in response to (A) $50 \mathrm{ng} / \mathrm{ml}$ SEB, (B) $50 \mathrm{ng} / \mathrm{ml}$ LPS, and (C) combination of $20 \mathrm{ng} / \mathrm{ml}$ SEB and 20 $\mathrm{ng} / \mathrm{ml}$ LPS was detected by RT-PCR.

를 병합하여 각각 처리하고 시간별로 TLR4 mRNA의 발 현을 비교하여 본 것이다. 사람 말초혈액 단핵구를 LPS 로 자극하였을 때에도 SEB 자극에 의한 TLR4 mRNA 변화와 유사한 발현양상을 보였는데 LPS 처리 후 1 시간 째 발현이 감소하였다가 이후 증가하여 6시간째 최고의 발현을 보였다. SEB 와 LPS를 병합하여 동시에 말초혈액 단핵구를 자극하였을 때는 TLR4 mRNA 발현의 변화가 더 현저하게 관찰되었다. SEB 와 LPS 를 병합하여 자극 후 TLR4 mRNA는 1 시간째 발현이 감소하고 이후 증가 하여 SEB와 LPS를 단독으로 처리하였을 때보다 더 뚜렷 하고 상승젹으로 발현이 증가하였다.

4. THP-1 세포주에서 SEB 또는 LPS 자극에 의한 TLR2와 TLR4 mRNA의 발현양상

Figure 3은 사람 대식세포주인 THP-1을 SEB 50 $\mathrm{ng} / \mathrm{ml}$ 또는 LPS $50 \mathrm{ng} / \mathrm{ml}$ 로 자극하고 TLR2와 TLR4 mRNA 의 발현을 시간별로 관찰한 것이다. TLR2 mRNA 의 발현은 SEB 나 LPS 자극 후에 현저한 변화가 관찰되 지 않았다. TLR4 mRNA 발현은 SEB 자극 후 6 시간째 현저하게 증가하였고, LPS 자극 후에는 2 시간째 발현이 감소하였다가 이후 증가하여 8시간째 최고로 증가하였다. SEB와 LPS 모두 THP-1 세포주에서 TLR4 mRNA 발현 에 유사한 변화를 유도하였고, LPS 보다 SEB 자극 후 TLR4 mRNA 발현이 더 빠르게 최고치로 증가하였다.

Figure 3. mRNA expression of human TLR2 and TLR4 in monocyte-like THP-1 cells in response to $50 \mathrm{ng} / \mathrm{ml}$ SEB or $50 \mathrm{ng} / \mathrm{ml}$ LPS was detected by RT-PCR. mRNA expression of TLR2 was constant regardless of the treatment with SEB (A) or LPS (C). mRNA expression of TLR4 was increased with SEB (B) or LPS (D) treatment. M indicates molecular marker.

고 찰

황색포도알균에서 분비되는 SEB 는 식중독을 일으키는 원인물질로 초항원에 의해 유발되는 의학적 질환 연구에 많이 사용되어 왔다. 본 실험에서는 SEB를 dye ligand affinity chromatography법으로 직접 정제하여 사용하였 는데, 이 방법은 적은 비용으로 많은 양의 단백질을 손쉽 게 정제할 수 있는 방법으로 알려져 있다(13,14). 본 실 험에서는 정제된 SEB가 순수 분리되었음을 SDS-PAGE 로 확인하였고, 마우스 비장세포를 이용하여 초항원 효과 를 증명하였다. 또한 내독소 함량을 측정한 결과 정제된 SEB 에는 무시해도 될 정도의 미량의 내독소가 함유되어 있음을 확인하였다. 이 결과로 오염된 LPS에 의한 영향 은 거의 배제할 수 있었다.

본 연구에서 TLR과 초항원의 연관성을 알아보기 위해 사용한 말초혈액 단핵구는 단핵구(monocyte)만 분리된 것이 아니고 림프구를 포함한 다른 세포분획도 섞여 있 을 가능성이 높다. 그러므로 초항원 자극으로 유도된 말 초혈액 단핵구의 TLR4 mRNA의 변화는 어느 세포분획 에 의해 유도되었는지 정확히 알 수 없었다. 이를 보완하 기 위해 단핵구 유사 대식세포주인 THP-1을 초항원으로 자극하여 TLR4 mRNA 의 변화를 확인하여 보았다. 그 결과 말초혈액 단핵구와 THP-1에서 동일한 변화를 관찰 할 수 있었고, 이로써 TLR4 mRNA의 의미 있는 변화는 주로 단핵구/대식세포에서 유도되는 것으로 추측할 수 있 었다. 사람 TLR의 조직 내 발현은 다양한데 Zarember와 Godowski(15)는 TLR mRNA를 실시간 $\mathrm{RT}-\mathrm{PCR}$ 로 확인 한 결과 대부분의 실험 조직에서 적어도 하나 이상의 TLR이 발현되었고, 비장과 말초혈액 백혈구는 거의 모든 TLR이 발현되었다. 백혈구 내에서도 전문적인 식세포에 서 매우 다양하게 TLR mRNA가 발현되었다. 대식세포 유사 THP-1 세포는 LPS나 세균의 lipoprotein, 살아있는 세균, 사이토카인 등 다양한 자극에 반응하여 TLR mRNA 발현이 조절됨이 관찰되었다.

본 연구에서 말초혈액 단핵구와 THP-1 세포를 SEB나 LPS로 자극하였을 때 초기 $1-2$ 시간 동안은 자극하지 않 은 상태보다 TLR4 mRNA 발현이 저하되었다가 이후 TLR4 4 RNA의 발현이 상승되는 것을 관찰할 수 있었다. 이런 TLR4 mRNA 발현의 변화는 SEB가 TLR4 활성에 연관성이 있다는 하나의 증거가 될 수 있을 것이다. 아직 문헌에서 SEB 가 LPS 와 같은 TLR4의 배위자라는 직접

적인 증거는 찾아볼 수 없으며, SEB 와 TLR4의 연관성에 관한 연구도 매우 적다. 최근 Calkins 등(16)은 TLR4가 돌연변이인 $\mathrm{C} 3 \mathrm{H} / \mathrm{HeJ}$ 마우스와 TLR4가 정상인 $\mathrm{C} 3 \mathrm{H} /$ HeN 마우스에 SEB 또는 LPS를 기관지내로 투여하여 폐의 다형핵 백혈구 축적과 기관지 폐포 세척액의 세포 수, macrophage inflammatory protein (MIP-2)의 양을 측정하여 본 결과 TLR4가 보존된 마우스에서는 LPS와 SEB 각각 단독 자극 시에 폐에 다형핵 백혈구의 축적과 MIP-2 생산의 증가가 관찰되었다. 반면에 TLR4 돌연변 이 마우스에서는 LPS와 SEB 모두에서 폐의 다형핵 백혈 구의 축적과 MIP-2 생산의 증가 등의 현상을 볼 수 없 었다. 이는 TLR4 신호전달이 LPS 외에 SEB와 같은 다 른 종류 PAMP 의 반응에도 관여한다는 간접적인 증거라 고 볼 수 있젰다.

말초혈액 단핵구와 THP-1 세포를 SEB나 LPS로 자극 하였을 때 처음부터 TLR4 mRNA 발현이 증가되지 않고 초기 1-2시간 동안은 자극하지 않은 상태보다 TLR4 mRNA 발현이 저하되는 것이 관찰되었다. 이런 현상은 다른 문헌에서도 관찰되는데, 마우스의 대식세포주인 RAW 264.7 세포를 LPS로 자극하였을 때 TLR4 mRNA 발현이 일시적으로 강하게 억제되는 것과 유사하다(17, 18). 이들 문헌에서는 이런 TLR4 mRNA 발현의 감소가 내독소에 대한 관용현상(tolerance)에 기여하는 것으로 설 명하였다. LPS에 먼저 노출된 후에 두 번째 LPS 자극을 주면 감수성이 저하되는데 이런 현상을 LPS 관용현상, 또는 LPS 반응저하(hyporesponsiveness)라고 한다(19). 이런 현상은 SEB 에서도 관찰되는데 사람 말초혈액 단핵 구가 두 번째 SEB 에 노출되면 농도가 처음 유발 용량의 10-100배 낮더라도 또는 SEB 노출 후 2 시간 이내라 하 더라도 즉각적이고 거의 완벽하게 $\mathrm{LL}-2$ 와 $\mathrm{IFN}-\gamma$ mRNA 발현을 차단하게 되는 중단(shutoff) 반응이 관찰 된다(20). 즉 초항원에 의한 신호전달이 T helper 1 사이 토카인 유전자를 강력하게 유도함과 동시에 초항원에 다 시 노출되었을 때 이들의 발현을 중단시키도록 유도하게 되는 것이다. LPS 자극 후 마우스 대식세포에서 TLR4 mRNA 발현이 일시적으로 감소하는 현상이 관찰되는데, LPS 자극이 TLR4-MD2의 세포 표면 발현을 감소시키고 동시에 사이토카인 생성을 감소 시켰으며, LPS로 전처치 한 마우스 대식세포에서 이후의 LPS 자극에 대해 NF-к B 활성을 비롯한 신호전달물질의 활성이 억제되었다(18). 그러나 본 연구에서 보인 SEB 또는 LPS 자극 후 일시적 인 TLR4 mRNA 발현의 감소가 다른 문헌에서처럼 관용 현상으로 나타난 것인지 아니면 TLR4 mRNA 발현이 증

가되기 전에 보이는 단순한 일시적 현상인지는 앞으로 추가적인 연구가 필요하리라 생각된다.

본 연구에서 말초혈액 단핵구 세포를 LPS나 SEB 단 독으로 자극하였을 때보다 LPS와 SEB 를 동시에 자극하 였을 때 TLR4 mRNA 발현의 변화가 더 현저해지는 것 을 관찰할 수 있었다. 내독소와 초항원이 실험동물에서 상승적으로 패혈쇼크를 유발하여 사망에 이르게 한다는 것은 이미 알려져 있다(3). 예를 들면 초항원인 TSST-1 을 전처치한 토끼는 LPS에 의해 사망에 이르는 감수성이 50,000 배 더 증가된다(21). 패혈쇼크 환자에서 카테터 등 을 통해 그람양성세균 감염이 그람음성세균 감염에 동반 되는 경우가 흔히 일어날 수 있다(22). 이런 경우 그람음 성세균의 LPS와 그람양성셰균의 초항원 사이에 상승작용 으로 치명적인 쇼크가 발생할 수 있으며, Bannan 등(23) 은 이를 'two-hit' 가설이라 요약하고 패혈증 발생의 기전 으로 설명하였다. 이와 같은 현상이 나타나는 기전에는 초항원에 의해 활성화된 T 림프구에서 interferon- γ 의 생성 증가가 관련이 있는 것으로 추측하고 있다(24). 본 연구에서 SEB와 LPS를 동시에 처치하였을 때 말초혈액 단핵구에서 관찰되는 TLR4 mRNA 발현의 상승적 변화 가 'two hit' 가설을 뒷받침할 수 있을 것으로 생각된다.

본 연구에서 보인 SEB 에 의한 TLR 발현의 변화는 반 정량적 $\mathrm{RT}-\mathrm{PCR}$ 법으로 관찰한 것으로 좀 더 정확한 변 화를 보기위해서는 실시간 RT-PCR, northern blot, western blot 등 좀 더 정량적인 방법을 사용하는 것이 필요하겠다. 또한 말초혈액 단핵구에 섞여 있는 림프구나 대식세포주에서 분비되는 사이토카인의 영향을 완전히 배제하지 못했다는 것도 본 실험의 제한점이라고 생각한 다. 향후 TLR들이 발현되지 않는 세포로 TLR을 핵산전 달감염(transfection)하여 실험한다면 좀 더 격관적인 결 과를 얻을 수 있을 것으로 생각한다.

요 약

목 적: 대표적인 세균 초항원인 포도알균 창자독소 $\mathrm{B}(\mathrm{SEB})$ 에 의한 면역세포 활성에 Toll-like receptor (TLR)의 관련성을 알아보고, 지질다당질(LPS)에 의한 TLR의 발현양상과 비교하여 보았다.

재료 및 방법: 세균 초항원인 SEB를 dye ligand affinity chromatography법으로 순수분리정제한 뒤 사람 말 초혈액 단핵구와 사람 대식세포주인 THP-1을 자극하여 이들 세포에서 TLR1-9의 mRNA의 발현을 역전사중합효 소반응법으로 확인하였고, 또한 LPS 자극에 의한 발현

양상과 비교하여 보았다.
결 과: SEB 로 사람 말초혈액 단헥구세포를 자극하였 을 때 TLR1과 TLR5 mRNA 발현의 상승이 관찰되었고, TLR4 4 mRNA 의 발현은 SEB 처리 후 1,2 시간째는 발현 이 익제되다가 3 시간 이후에 상승되는 양상을 보였다. 이 런 TLR4 mRNA 발현의 변화는 말초혈액 단핵구를 LPS 로 자극하였을 때도 유사하게 관찰되었고, SEB 와 LPS 를 동시에 자극하였을 때 더 현저한 변화를 보였다. 사람 대 식세포주인 $\mathrm{THP}-1$ 을 SEB 및 LPS로 자극하였을 때 TLR2 보다는 TLR4의 mRNA 발현에 현저한 변화를 관 찰할 수 있었다.

결 론: 이상의 결과로 SEB 에 의한 사람 말초혈액 단 핵구세포와 대식세포의 활성에 TLR의 연관성을 확인할 수 있었으며, 적어도 TLR4가 SEB 에 대식세포 활성에 관 여되었다. 또한 SEB 와 LPS 는 동시에 병용하여 단핵구세 포를 자극하였을 때 상승적으로 TLR4 발현을 촉진할 것 으로 추정된다. 향후 SEB 자극에 의한 대식세포 활성에 TLR의 관여 여부를 더 상세히 밝히는 것이 초항원에 의 해 유발되는 질환들을 해결하는 중요한 열쇠가 될 수 있 을 것으로 생각된다.

감사의 글

본 논문은 2002년 연세대학교 학술연구비 지원에 의해 연구되었습니다. 창자독소 분리를 도와주신 관동대학교 의과대학 신운섭 교수님께 감사드립니다.

참 고 문 헌

1) Llewelyn M, Cohen J:Superantigens: microbial agents that corrupt immunity. Lancet Infect Dis 2:156-62, 2002
2) Bernal A, Proft T, Fraser JD, Posnett DN: Su perantigens in human disease. I Clin Immunol 19: 149-57, 1999
3) Blank C, Luz A, Bendigs S, Erdmann A, Wagner H, Heeg K: Superantigen and endotoxin synergize in the induction of lethal shock. Eur J Immunol 27:825-33, 1997
4) Du C, Sriram S : Induction of Interleukin-12/p40 by superantigens in macrophages is mediated by activation of nuclear factor-kB. Cell Immunol 199: 50-7, 2000
5) Zilber MT, Gregory S , Mallone R , eaglio S , Malavasi F, Charron D, Gelin C: CD38 expressed on human monocytes: A coaccessory molecule in
the superantigen-induced proliferation. PNAS 97: 2840-6, 2000
6) Takeuchi O, Akira S :Toll-like receptors; their physiological role and signal transduction system. Int Immunopharmacol 1:625-35, 2001
7) Hashimoto C, Hudson KL, Anderson KV: The Toll gene of Drosophilia, required for dorsal-ventral embryonic polarity, appears to encode a trans membrane protein. Cell 52:269-79, 1988
8) Medzhitov R, Preston-Hurlburt P, Janeway Jr. CA: A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394-7, 1997
9) Zhang D, Zhang G, Hayden MS, Greenblatt MB, Bussey C, Flavell RA, Ghosh S:A toll-like receptor that prevents infection by uropathogenic bac teria. Science 303:1522-6, 2004
10) Akira S , Takeda K : Toll-like receptor signalling. Nat Rev Immunol 4:499-511, 2004
11) Underhill DM, Ozinsky A: Toll-like receptors: key mediators of microbe detection Curr Opin Im^{-} munol 14:103-10, 2002
12) Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdörfer B, Giese T, Endres S, Hartmann G: Quantitative expression of Toll-like receptor 1 -10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to $C p G$ oligodeoxynucleaotides. J Immunol 168:4531-7, 2002
13) Brehm RD, Tranter HS, Hambleton P, Melling J: Large-scale purification of staphylococcal entero toxins A, B, and $C 2$ by dye ligand affinity chromatography. Appl Environ Microbiol 56:1067-72, 1990
14) 박선미, 정민호, 이상화, 서수영, 송진미, 김화숙, 이성 태, 임 영진: Dye-ligand affinity chromatography를 이 형한 Staphylococcus aureus의 장독소 B 분리. Ko rean J Immunol 18:559-69, 1996
15) Zarember KA, Godowski PJ:Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol 168:554-61, 2002
16) Calkins CM, Barsness K, Bensard DD, VasquezTorres A, Raeburn CD, Meng X, Mcintyre RC Jr: Toll-like receptor-4 signaling mediates pulmonary neutrophil sequestration in response to gram- $^{-}$ positive bacterial enterotoxin. I Surg Res 15:104: 124-30, 2002
17) Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B: Defective LPS signaling in $\mathrm{C} 3 \mathrm{H} / \mathrm{HeJ}$ and C57BL/10ScCr mice: mutations in Tlr4 gene.

Science 282:2085-8, 1998
18) Nomura F, Akashi S, Sakao Y, Sato S, Kawai T, Matsumoto M, Nakanishi K, Kimoto M, Miyake K, Takeda K : Endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of surface Toll-like receptor 4 expression. I Immunol 164:3476-9, 2000
19) Greisman SE, Young EJ, Woodward WE: Mechanisms of endotoxin tolerance. IV. Specificity of the pyrogenic refractory state during continuous intravenous infusions of endotoxin. I Exp Med 124:9831000,1966
20) Arad G, Levy R, Kaempfer R:Superantigen concomitantly induces Thl cytokine genes and the
ability to shut off their expression on re-exposure to superantigen. Immunol Lett 82:75-8, 2002
21) Cohen J:The immunopathogenesis of sepsis. Nature 420:885-91, 2002
22) Rangel-Frausto MS: The epidemiology of bacterial sepsis. Infect Dis Clin North Am 13:299-312, 1999
23) Bannan J, Visvanathan K, Zabriskie JB:Structure and function of streptococcal and staphylococcal superantigens in septic shock. Infect Dis Clin North Am 13:387-96, 1999
24) Dinges MM, Schlievert PM: Role of T cells and gamma interferon during induction of hypersensitivity to lipopolysaccharide by toxic shock syndrome toxin 1 in mice. Infect Immun 69:1256-64,

[^0]: 접수: 2004년 7월 16일, 슴인:2004년 9월 24일 본 논문은 2002년 연세대학교 학술연구비 지원에 의해 연구됨. 교신저자:김효열, 감원도 원주시 일산동 162 연세대학교 원주의과대학 감염내과
 Tel:033)741-1206, Fax:033)748-1206
 E-mail : hyksos@wonju.yonsei.ac.kr

